Java - Metadata
This tutorial detects and draws faces into the webcam video. The demo connects two filters, the KmsDetectFaces and the KmsShowFaces.
Note
Web browsers require using HTTPS to enable WebRTC, so the web server must use SSL and a certificate file. For instructions, check Configure a Java server to use HTTPS.
For convenience, this tutorial already provides dummy self-signed certificates (which will cause a security warning in the browser).
For the impatient: running this example
You need to have installed the Kurento Media Server before running this example. Read the installation guide for further information.
To launch the application, you need to clone the GitHub project where this demo is hosted, and then run the main class:
git clone https://github.com/Kurento/kurento.git
cd kurento/tutorials/java/facedetector/
git checkout 7.2.0
mvn -U clean spring-boot:run
Access the application connecting to the URL https://localhost:8443/ in a WebRTC capable browser (Chrome, Firefox).
Note
These instructions work only if Kurento Media Server is up and running in the same machine
as the tutorial. However, it is possible to connect to a remote KMS in other machine, simply adding
the flag kms.url
to the JVM executing the demo. As we’ll be using maven, you should execute
the following command
mvn -U clean spring-boot:run \
-Dspring-boot.run.jvmArguments="-Dkms.url=ws://{KMS_HOST}:8888/kurento"
Note
This demo needs the kurento-module-datachannelexample module installed in the media server. That module is available in the Kurento repositories, so it is possible to install it with:
sudo apt-get install kurento-module-datachannelexample
Understanding this example
To implement this behavior we have to create a Media Pipeline composed by one WebRtcEndpoint and two filters KmsDetectFaces and KmsShowFaces. The first one detects faces into the image and it puts the info about the face (position and dimensions) into the buffer metadata. The second one reads the buffer metadata to find info about detected faces. If there is info about faces, the filter draws the faces into the image.
This is a web application, and therefore it follows a client-server architecture. At the client-side, the logic is implemented in JavaScript. At the server-side, we use a Spring-Boot based application server consuming the Kurento Java Client API, to control Kurento Media Server capabilities. All in all, the high level architecture of this demo is three-tier. To communicate these entities, two WebSockets are used. First, a WebSocket is created between client and application server to implement a custom signaling protocol. Second, another WebSocket is used to perform the communication between the Kurento Java Client and the Kurento Media Server. This communication takes place using the Kurento Protocol. For further information on it, please see this page of the documentation.
The following sections analyze in depth the server (Java) and client-side (JavaScript) code of this application. The complete source code can be found in GitHub.
Application Server Logic
This demo has been developed using Java in the server-side, based on the Spring Boot framework, which embeds a Tomcat web server within the generated maven artifact, and thus simplifies the development and deployment process.
Note
You can use whatever Java server side technology you prefer to build web applications with Kurento. For example, a pure Java EE application, SIP Servlets, Play, Vert.x, etc. Here we chose Spring Boot for convenience.
The main class of this demo is MetadataApp. As you can see, the KurentoClient is instantiated in this class as a Spring Bean. This bean is used to create Kurento Media Pipelines, which are used to add media capabilities to the application. In this instantiation we see that we need to specify to the client library the location of the Kurento Media Server. In this example, we assume it is located at localhost, listening in port TCP 8888. If you reproduce this example, you’ll need to insert the specific location of your Kurento Media Server instance there.
Once the Kurento Client has been instantiated, you are ready for communicating with Kurento Media Server and controlling its multimedia capabilities.
@EnableWebSocket
@SpringBootApplication
public class MetadataApp implements WebSocketConfigurer {
static final String DEFAULT_APP_SERVER_URL = "https://localhost:8443";
@Bean
public MetadataHandler handler() {
return new MetadataHandler();
}
@Bean
public KurentoClient kurentoClient() {
return KurentoClient.create();
}
@Override
public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
registry.addHandler(handler(), "/metadata");
}
public static void main(String[] args) throws Exception {
new SpringApplication(MetadataApp.class).run(args);
}
}
This web application follows a Single Page Application architecture
(SPA), and uses a WebSocket to communicate client with
application server by means of requests and responses. Specifically, the main
app class implements the interface WebSocketConfigurer
to register a
WebSocketHandler
to process WebSocket requests in the path /metadata
.
MetadataHandler
class implements TextWebSocketHandler
to handle text WebSocket requests.
The central piece of this class is the method handleTextMessage
. This
method implements the actions for requests, returning responses through the
WebSocket. In other words, it implements the server part of the signaling
protocol depicted in the previous sequence diagram.
In the designed protocol there are three different kinds of incoming messages to
the Server : start
, stop
and onIceCandidates
. These messages are
treated in the switch clause, taking the proper steps in each case.
public class MetadataHandler extends TextWebSocketHandler {
private final Logger log = LoggerFactory.getLogger(MetadataHandler.class);
private static final Gson gson = new GsonBuilder().create();
private final ConcurrentHashMap<String, UserSession> users = new ConcurrentHashMap<>();
@Autowired
private KurentoClient kurento;
@Override
public void handleTextMessage(WebSocketSession session, TextMessage message) throws Exception {
JsonObject jsonMessage = gson.fromJson(message.getPayload(), JsonObject.class);
log.debug("Incoming message: {}", jsonMessage);
switch (jsonMessage.get("id").getAsString()) {
case "start":
start(session, jsonMessage);
break;
case "stop": {
UserSession user = users.remove(session.getId());
if (user != null) {
user.release();
}
break;
}
case "onIceCandidate": {
JsonObject jsonCandidate = jsonMessage.get("candidate").getAsJsonObject();
UserSession user = users.get(session.getId());
if (user != null) {
IceCandidate candidate = new IceCandidate(jsonCandidate.get("candidate").getAsString(),
jsonCandidate.get("sdpMid").getAsString(),
jsonCandidate.get("sdpMLineIndex").getAsInt());
user.addCandidate(candidate);
}
break;
}
default:
sendError(session, "Invalid message with id " + jsonMessage.get("id").getAsString());
break;
}
}
private void start(final WebSocketSession session, JsonObject jsonMessage) {
...
}
private void sendError(WebSocketSession session, String message) {
...
}
}
In the following snippet, we can see the start
method. It handles the ICE
candidates gathering, creates a Media Pipeline, creates the Media Elements
(WebRtcEndpoint
, KmsShowFaces
and KmsDetectFaces
) and make the
connections among them. A startResponse
message is sent back to the client
with the SDP answer.
private void start(final WebSocketSession session, JsonObject jsonMessage) {
try {
// User session
UserSession user = new UserSession();
MediaPipeline pipeline = kurento.createMediaPipeline();
user.setMediaPipeline(pipeline);
WebRtcEndpoint webRtcEndpoint = new WebRtcEndpoint.Builder(pipeline).build();
user.setWebRtcEndpoint(webRtcEndpoint);
users.put(session.getId(), user);
// ICE candidates
webRtcEndpoint.addIceCandidateFoundListener(new EventListener<IceCandidateFoundEvent>() {
@Override
public void onEvent(IceCandidateFoundEvent event) {
JsonObject response = new JsonObject();
response.addProperty("id", "iceCandidate");
response.add("candidate", JsonUtils.toJsonObject(event.getCandidate()));
try {
synchronized (session) {
session.sendMessage(new TextMessage(response.toString()));
}
} catch (IOException e) {
log.debug(e.getMessage());
}
}
});
// Media logic
KmsShowFaces showFaces = new KmsShowFaces.Builder(pipeline).build();
KmsDetectFaces detectFaces = new KmsDetectFaces.Builder(pipeline).build();
webRtcEndpoint.connect(detectFaces);
detectFaces.connect(showFaces);
showFaces.connect(webRtcEndpoint);
// SDP negotiation (offer and answer)
String sdpOffer = jsonMessage.get("sdpOffer").getAsString();
String sdpAnswer = webRtcEndpoint.processOffer(sdpOffer);
JsonObject response = new JsonObject();
response.addProperty("id", "startResponse");
response.addProperty("sdpAnswer", sdpAnswer);
synchronized (session) {
session.sendMessage(new TextMessage(response.toString()));
}
webRtcEndpoint.gatherCandidates();
} catch (Throwable t) {
sendError(session, t.getMessage());
}
}
The sendError
method is quite simple: it sends an error
message to the
client when an exception is caught in the server-side.
private void sendError(WebSocketSession session, String message) {
try {
JsonObject response = new JsonObject();
response.addProperty("id", "error");
response.addProperty("message", message);
session.sendMessage(new TextMessage(response.toString()));
} catch (IOException e) {
log.error("Exception sending message", e);
}
}
Client-Side Logic
Let’s move now to the client-side of the application. To call the previously
created WebSocket service in the server-side, we use the JavaScript class
WebSocket
. We use a specific Kurento JavaScript library called
kurento-utils.js to simplify the WebRTC interaction with the server. This
library depends on adapter.js, which is a JavaScript WebRTC utility
maintained by Google that abstracts away browser differences. Finally
jquery.js is also needed in this application.
These libraries are linked in the
index.html
web page, and are used in the
index.js.
In the following snippet we can see the creation of the WebSocket (variable
ws
) in the path /metadata
. Then, the onmessage
listener of the
WebSocket is used to implement the JSON signaling protocol in the client-side.
Notice that there are three incoming messages to client: startResponse
,
error
, and iceCandidate
. Convenient actions are taken to implement each
step in the communication. For example, in functions start
the function
WebRtcPeer.WebRtcPeerSendrecv
of kurento-utils.js is used to start a
WebRTC communication.
var ws = new WebSocket('wss://' + location.host + '/metadata');
ws.onmessage = function(message) {
var parsedMessage = JSON.parse(message.data);
console.info('Received message: ' + message.data);
switch (parsedMessage.id) {
case 'startResponse':
startResponse(parsedMessage);
break;
case 'error':
if (state == I_AM_STARTING) {
setState(I_CAN_START);
}
onError("Error message from server: " + parsedMessage.message);
break;
case 'iceCandidate':
webRtcPeer.addIceCandidate(parsedMessage.candidate, function(error) {
if (error) {
console.error("Error adding candidate: " + error);
return;
}
});
break;
default:
if (state == I_AM_STARTING) {
setState(I_CAN_START);
}
onError('Unrecognized message', parsedMessage);
}
}
function start() {
console.log("Starting video call ...")
// Disable start button
setState(I_AM_STARTING);
showSpinner(videoInput, videoOutput);
console.log("Creating WebRtcPeer and generating local sdp offer ...");
var options = {
localVideo : videoInput,
remoteVideo : videoOutput,
onicecandidate : onIceCandidate
}
webRtcPeer = new kurentoUtils.WebRtcPeer.WebRtcPeerSendrecv(options,
function(error) {
if (error) {
return console.error(error);
}
webRtcPeer.generateOffer(onOffer);
});
}
function onOffer(error, offerSdp) {
if (error)
return console.error("Error generating the offer");
console.info('Invoking SDP offer callback function ' + location.host);
var message = {
id : 'start',
sdpOffer : offerSdp
}
sendMessage(message);
}
function onError(error) {
console.error(error);
}
function onIceCandidate(candidate) {
console.log("Local candidate" + JSON.stringify(candidate));
var message = {
id : 'onIceCandidate',
candidate : candidate
};
sendMessage(message);
}
function startResponse(message) {
setState(I_CAN_STOP);
console.log("SDP answer received from server. Processing ...");
webRtcPeer.processAnswer(message.sdpAnswer, function(error) {
if (error)
return console.error(error);
});
}
function stop() {
console.log("Stopping video call ...");
setState(I_CAN_START);
if (webRtcPeer) {
webRtcPeer.dispose();
webRtcPeer = null;
var message = {
id : 'stop'
}
sendMessage(message);
}
hideSpinner(videoInput, videoOutput);
}
function sendMessage(message) {
var jsonMessage = JSON.stringify(message);
console.log('Sending message: ' + jsonMessage);
ws.send(jsonMessage);
}
Dependencies
This Java Spring application is implemented using Maven. The relevant part of the pom.xml is where Kurento dependencies are declared. As the following snippet shows, we need two dependencies: the Kurento Client Java dependency (kurento-client) and the JavaScript Kurento utility library (kurento-utils) for the client-side. Other client libraries are managed with webjars:
<dependencies>
<dependency>
<groupId>org.kurento</groupId>
<artifactId>kurento-client</artifactId>
</dependency>
<dependency>
<groupId>org.kurento</groupId>
<artifactId>kurento-utils-js</artifactId>
</dependency>
<dependency>
<groupId>org.webjars</groupId>
<artifactId>webjars-locator</artifactId>
</dependency>
<dependency>
<groupId>org.webjars.bower</groupId>
<artifactId>bootstrap</artifactId>
</dependency>
<dependency>
<groupId>org.webjars.bower</groupId>
<artifactId>demo-console</artifactId>
</dependency>
<dependency>
<groupId>org.webjars.bower</groupId>
<artifactId>adapter.js</artifactId>
</dependency>
<dependency>
<groupId>org.webjars.bower</groupId>
<artifactId>jquery</artifactId>
</dependency>
<dependency>
<groupId>org.webjars.bower</groupId>
<artifactId>ekko-lightbox</artifactId>
</dependency>
</dependencies>
Note
You can find the latest version of Kurento Java Client at Maven Central.